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Abstract
We consider the nonlinear wave propagation in an averaged dispersion-
managed (DM) fibre system. We present the explicit Lax pair with a variable
spectral parameter and derive the exact soliton solution using the Bäcklund
transformation. A similar study is also carried out for simultaneous propagation
of N nonlinear pulses in the averaged DM fibre system.

PACS numbers: 42.81.Dp, 42.65.Tg, 05.45.Yu

Nonlinear pulse propagation in a long-distance, high-speed optical fibre transmission system
can be described by the (perturbed) nonlinear Schrödinger (NLS) equation. The NLS equation
includes the linear effect due to the group velocity of the pulse and the nonlinear effect due to the
Kerr effect [1]. Many research works on the development of such a system have concentrated
efforts on overcoming or controlling these effects [2, 3]. In this direction, recent numerical
studies [4–6] and experiments [7] have shown that a periodic dispersion compensation seems
to be the most effective way of improving the optical transmission system. The main purpose
of the dispersion management is to reduce several effects such as radiation due to lumped
amplifiers compensating the fibre loss [8, 9], modulational instability [10], jitters caused by
the collisions between signals [11], and the Gordon–Haus effect resulting from the interaction
with noise [12], and also to set a desired average value of the dispersion [10].

Basically, the dispersion-management technique utilizes a transmission line with a periodic
dispersion map, such that each period is built up by two types of fibre, generally with
different lengths and opposite group-velocity dispersion (GVD) [4]. Lakoba has proved
the non-integrability of the system equation governing the pulse propagation in dispersion-
managed (DM) fibres [13]. As there is no available analytical solution for DM solitons, to
date researchers have utilized the Lagrangian method to efficiently study the dynamics of DM
solitons [4]. Very recently we have developed a complete collective variable theory for DM
solitons which effectively includes the residual field due to soliton dressing and radiation [14].
Many works have been reported to fit a Hermite–Gaussian ansatz function for the oscillating
tails of the numerical stationary solution (fixed point) of the DM solitons [4, 15–17]. It was
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pointed out in numerical studies [5, 6] that in a DM fibre line the pulse is deformed from
the ideal soliton, has a chirp and requires an enhanced power for the average dispersion.
Meanwhile Kumar and Hasegawa [18] have obtained a new nonlinear pulse (quasi-soliton) by
programming the dispersion profile such that the wave equation has a combination of the usual
quadratic potential and the linear parabolic potential.

In this paper, we consider the DM soliton equation averaged over one dispersion map. We
present the Lax pair and derive the exact soliton solution using the Bäcklund transformation.
Finally we also present the Lax pair and derive the exact soliton solutions for the N fields
propagation.

Nonlinear pulse dynamics in a DM fibre is governed by the NLS equation

iuz +
D(z)

2
uττ + γ |u|2u = 0 (1)

where u represents the complex envelope amplitude, subscripts τ and z denote the partial
derivatives with respect to time and distance along the direction of propagation. D(z) is the
GVD parameter which periodically changes between normal and anomalous for the dispersion
management and γ is the parameter related to Kerr nonlinearity. Note that in equation (1),
optical losses are not included.

Using a chirped ansatz function for equation (1), Hasegawa et al [19], have averaged it
over one dispersion map and derived

iuz +
D0

2
uττ + γ0|u|2u + κ0τ

2u = 0 (2)

where D0, γ0 and κ0 are related to the averaged fibre and pulse parameters (see [19] for more
details). Kumar and Hasegawa derived a chirped stationary solution of equation (2) [18].

Using the scaling τ = √
D0/2 t and u = √

2/γ0 q, equation (2) can be transformed to

iqz + qtt + 2|q|2q +
κ0D0

2
t2q = 0. (3)

Now, consider the optical losses with loss parameter β and κ0D0/2 = β2, so that equation (3)
becomes

iqz + qtt + 2|q|2q + β2t2q + iβq = 0. (4)

Thus equation (4) becomes a special case of the averaged DM soliton equation (2) with optical
losses.

The lax pair associated with equation (4) is derived as

∂�

∂t
= U1�

� = (ψ1ψ2)
T

(5)

where

U1 =
( −iλ Q

−Q∗ iλ

)
(6)

where Q = q exp(−iβt2/2) and λ is the variable spectral parameter given by

λ = α(z) + iζ(z) λz = −2βλ λt = 0 (7a)

λ = µ exp(−2βz) α(z) = R(µ) exp(−2βz) ζ(z) = I(µ) exp(−2βz). (7b)
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Here R(µ) and I(µ), are respectively, the real and imaginary parts of the hidden iso-
spectral parameter µ. Space evolution of eigenfunction � is given by
∂�

∂z
= V1� (8)

V1 = 2iλ2

( −1 0
0 1

)
+ 2λ

(
iβt Q

−Q∗ −iβt

)
+ i

( |Q|2 Qt + 2iβtQ
Q∗

t − 2iβtQ∗ −|Q|2
)
. (9)

Equation (4) can be obtained from the compatibility condition U1z − V1t + [U1, V1] = 0.
We derive the Bäcklund transformation from the time evolution equation of the

eigenfunction. In order to construct the Bäcklund transformation, let us write down equation (5)
in terms of the Riccati equation. For this purpose, we introduce a new variable (or
pseudopotential)

� = ψ1

ψ2
. (10)

Equation (10) yields,

�t = −2iλ� + Q + Q∗�2. (11)

Now transformation of variables � → �′, λ → λ′ and Q → Q′ which keep the form
of equation (11) invariant are sought. The simplest transformation can be tried by setting
�′ = �, λ′ = λ∗ and looking for Q′ in the form

Q − Q′ = 2i(λ − λ∗)�
1 + |�|2 . (12)

Equation (12) defines the Bäcklund transformation of equation (4) with Q = q

exp(−iβt2/2). Here the primed quantities refer to N -soliton solution and the unprimed
quantities refer to (N−1) soliton solution. To construct the soliton solution of equation (4), we
start with the zero-soliton solution Q = 0. By substituting this trivial solution in equations (5)
and (8), the explicit form of �(0) is obtained as

�(0) = exp[ξ(z, t) + iθ(z, t)] (13)

where ξ(z, t) and θ(z, t) are given by

ξ(z, t) = 2ζ t + 8
∫

αζ dz − 4βt
∫

ζ dz (14)

θ(z, t) = −2αt − 4
∫
(α2 − ζ 2) dz + 4βt

∫
α dz. (15)

The explicit form of ξ and θ can be respectively derived from equations (14) and (15) using
equations (7). The one-soliton solution for equation (4) from (13) and with q = Q exp(iβt2/2)
is derived as

q(z, t) = 2ζ sech(ξ) exp(iθ + iβt2/2). (16)

Thus we have derived the exact soliton solution for the averaged DM fibre system equation
with losses using Bäcklund transformation. In [18], a chirped stationary soliton solution
for equation (2) has been presented. Here, we have proved that the system equation (4)
is completely integrable with the availability of the Lax pair and derived the exact soliton
solution.

To achieve wavelength division multiplexing one needs to consider the simultaneous
propagation of N fields. When we consider the simultaneous propagation of N fields in
the averaged DM soliton equation (4), then the system equation can be written as

iqjz + qjtt + 2qj

( N∑
n=1

|qn|2
)

+ β2t2qj + iβqj = 0 j = 1, 2, . . . , N. (17)
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The Lax pair associated with equation (17) is constructed as
∂�

∂t
= U2�

� = (ψ1ψ2ψ3 · · ·ψN+1)
T

(18)

where

U2 =




−iλ Q1 Q2 · · · QN

−Q∗
1 iλ 0 · · · 0

−Q∗
2 0 iλ · · · 0

...
...

...
. . .

...

−Q∗
N 0 0 · · · iλ


 (19)

where Qj = qj exp(−iβt2/2) and λ is given by equations (7).
The space evolution of the eigenfunction � is given by

∂�

∂z
= V2� (20)

V2 = 2iλ2




−1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


 + 2λ




iβt Q1 Q2 · · · QN

−Q∗
1 −iβt 0 · · · 0

−Q∗
2 0 −iβt · · · 0

...
...

...
. . .

...

−Q∗
N 0 0 · · · −iβt




+i




∑N
n=1 |Qn|2 Q1t + 2iβtQ1 Q2t + 2iβtQ2 · · · QNt + 2iβtQN

Q∗
1t − 2iβtQ∗

1 −|Q1|2 −Q2Q
∗
1 · · · −QNQ

∗
1

Q∗
2t − 2iβtQ∗

2 −Q1Q
∗
2 −|Q2|2 · · · −QNQ

∗
2

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Q∗
Nt − 2iβtQ∗

N −Q1Q
∗
N −Q2Q

∗
N · · · −|QN |2


 . (21)

System equation (17) can be obtained from the compatibility conditionU2z−V2t+[U2, V2] = 0.
In order to construct the Bäckund transformation of equation (17), we introduce new

variables (or pseudopotentials)

�j = ψj

ψN+1
j = 1, 2, . . . , N. (22)

Using the same procedure, the Bäcklund transformation for equation (17) is derived as

Qj − Q′
j =




2i (λ − λ∗) �1�
∗
j+1

1 +
∑N

n=1 |�n|2
for j = 1, 2, . . . , N − 1

2i(λ − λ∗)�1

1 +
∑N

n=1 |�n|2
for j = N .

(23)

Similarly, the one-soliton solutions of equations (17) are generated as

qj = 2ζa∗
j+1

a∗
1

sech(ξ) exp(iθ + iβt2/2) j = 1, 2, . . . , N − 1 (24a)

qN = 2ζ

a∗
1

sech(ξ) exp(iθ + iβt2/2) (24b)

with the condition 1 +
∑N

n=2 |an|2 = |a1|2.
In conclusion we have considered a special case of the averaged DM fibre system equation

with fibre losses and presented the explicit Lax pair with variable spectral parameters. Using
the Bäcklund transformation, we have successfully derived the exact soliton solution. A similar
study is also extended for the simultaneous propagation of N nonlinear pulses in the averaged
DM fibre system.
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